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SUMMARY

A new approach for modelling the �uid–structure interaction of �exible heart valves is proposed. Using
a �nite element method, a Lagrangian description of a non-linear solid and an Eulerian description of
a �uid are coupled by a Lagrange multiplier. This multiplier allows the solid and �uid mesh to be
non-conform. Solid displacements and �uid velocities are described well in such a �ctitious domain
approach. However, the accuracy of pressures and shear stresses in the vicinity of the solid are poor.
Therefore an inexpensive mesh-adaptation algorithm is applied, which adapts the �uid mesh to the
position of the solid mesh every time step. This minor adjustment of the �uid mesh makes it possible
to sustain a physiological pressure gradient across a solid lea�et. Furthermore, shear stresses can be
computed at both sides of the lea�et. The method is demonstrated for a 2D example, however with a
scope to 3D modelling. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: �uid–structure; mesh adaptation; �ctitious domain; heart valves

1. INTRODUCTION

Computational methods can be of great help in understanding heart valve pathologies. The
behaviour of the valves (mitral or aortic, mechanical or biological), which should cause no
resistence during systole, but need to sustain large pressure gradients during diastole, is how-
ever not easy to capture. A variety of models have been proposed throughout the years in
order to get better insight in the mechanical behaviour of heart valves. Application of these
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models can be distinguished into mechanical heart valve and biological (or polymeric) heart
valve analysis.
The sti� mechanical valves will not change shape and hence the valve can be modelled

as a rigid body if stresses and strains are not of interest. In an attempt to get information
about the �ow around a mechanical valve, a canal with rigid walls was considered with a
rigid obstacle inhibiting the �ow [1]. The angle of the obstacle can then easily be changed.
However, the transient behaviour of valve and �ow is not captured by such models. An ALE
method combined with remeshing as used by Lai et al. [2] or a marker method as proposed
by Shi et al. [3], overcome this problem and capable of capturing transient behaviour.
Compared to the mechanical heart valve, modelling of a �exible heart valve is geometrically

and numerically, more complex. The bending sti�ness of the lea�ets is very low compared to
the tensile strength along the lea�et surface. This �exibility results in large geometrical changes
of the lea�ets when exposed to a pulsatile �ow. Despite this �exibility the valve in�uences
the �ow greatly since it is attached to the wall and is impermeable. During diastolic phase
the valve has to sustain a physiological transvalvular pressure gradient. It is obvious that a
numerical code needs to be able to describe all phenomena during a heart cycle.
Compared to mechanical heart valves one is often interested not only in the �ow pattern

around the lea�ets but also the strains and stresses inside the lea�ets. A modelling approach
was to apply a pressure force onto the lea�ets disregarding the �uid [4, 5]. These models show
that the interaction between the blood �ow and the valve lea�ets cannot be neglected. After
that, two dimensional models emerged with a two dimensional �uid domain coupled to a solid
lea�et. The ALE algorithm is often used as a way of coupling an Eulerian description of the
�uid domain to a Lagrangian description of the solid domain. This method is combined with
remeshing whenever the quality of the �uid mesh degenerates [6]. Since large rotations of the
lea�ets within the �uid domain are considered here, this combination of ALE and remeshing
is obligatory. When meshes become larger and more complex, computing a new conform
mesh, as is required when using an ALE method, can be a di�cult and time consuming task.
Another technique for modelling �uid–structure problems, called �ctitious domain (FD),

was used by Glowinski [7–9] and Bertrand [10]. A Lagrange multiplier is used to couple an
Eulerian �uid mesh to rigid solids. This Lagrange multiplier allows the meshes to be non-
conform and, more important, no remeshing is necessary. A di�erentiation of the FD method,
in which slender Lagrangian solids are coupled to the Eulerian �uid domain, was introduced
by Baaijens [11].
This method was �rst applied in a two dimensional �uid–lea�et interaction model by

De Hart [12]. An extension to 3D was published recently [13, 14]. In these models the com-
pliant solid walls are described using an ALE method while an FD method is used for the
lea�ets.
However in general, FD methods require an interpolation to the immersed boundary. As a

result these methods do not allow for highly accurate descriptions of gradients in velocity �eld
and pressure discontinuities across the immersed boundaries. Hence, in heart valves, where
shear and substantial diastolic pressure gradients along the lea�ets play an important role in
their functioning, the application of FD solely to describe the interaction may not be su�cient.
The goal of this paper is to develop a method that is able to accurately capture stresses along

the lea�et boundary. Furthermore, physiological pressure gradients across a lea�et should be
computed correctly. The presented method is an extension of the FD method [11, 12], with an
inexpensive adaptive meshing technique. By creating an inner �uid curve, that coincides with
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the solid boundary, only interpolation along (and not across) the boundary is needed, resulting
in more accurate solutions. Typical model problems are presented to show the method’s ability
of describing transvalvular shear stress and pressure discontinuities.

2. METHODS

2.1. Governing equations

Throughout the whole paper �uid–structure problems are considered in which the �uid is
described by the Navier-Stokes equation and the continuity equation,

�
(
dCf
dt
+ Cf · ∇Cf

)
=∇ · �f − ∇pf (1)

∇ · Cf = 0 (2)

in which Cf is the �uid velocity, ∇ the gradient operator, � the density and pf the hydrostatic
pressure in the �uid. The viscous part of the Cauchy stress tensor denoted as �f reads,

�f=2�D (3)

in which � represents the dynamic viscosity and tensor D the rate of deformation tensor,

D= 1
2(∇Cf + (∇Cf)T) (4)

An incompressible solid phase is considered, described by

∇ · �s − ∇ps = 0 (5)

det(F) = 1 (6)

in which ps is the hydrostatic pressure in the solid and F the gradient deformation tensor
(I + (∇0us)T) where us is the solid displacement vector and ∇0 the gradient operator with
respect to the reference state. The extra stress tensor �s is de�ned as

�s=G(F · FT − I) (7)

where G is the shear modulus and I the unity tensor.

2.2. Coupling

The �uid–structure problems presented throughout this paper consist of a �uid domain (�f)
and an immersed solid domain (�s). These two domains are coupled at the boundary (@�s)
of the solid domain by the constraint, Cf − Cs= 0. This constraint is applied weakly by intro-
ducing a distributed Lagrange multiplier (�). The weak forms for Equations (2), (6) and the
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Figure 1. From a solid boundary curve @�s intersecting a �uid domain �f (a) an inner �uid curve
@�f is created, that coincides with @�s (b).

constraint then become,
∫
�f

wf ·
(
�

(
dCf
dt
+ Cf · ∇Cf

)
− ∇ · �f +∇p

)
d�f +

∫
@�s
ws · � d@�s= 0 (8)

∫
�s
ws · (∇ · �s − ∇p) d�s −

∫
@�s
wf · � d@�s = 0 (9)

∫
@�s
w� · (Cf − Cs) d@�s = 0 (10)

in which ws, wf and w� are appropriate test functions. A same approach is used by Glowinski
[8, 9] and de Hart [12] in an FD approach. So far, these methods are generally similar to
the one proposed in this paper. The way of applying the Lagrange multiplier is, however,
di�erent.
Consider a �uid domain, which is discretized into triangular elements, with a boundary

@�s crossing the elements (Figure 1(a)). In the model problems, that de Hart presented, the
Lagrange multiplier is de�ned along the boundary, @�s, to couple the velocity of this boundary
to the velocity of the �uid elements in which the boundary is situated [12]. Although such
an approach gives satisfactory results for valve displacement and the general �ow behaviour,
it fails to provide an accurate description of shear stresses at either side of the valve. Since
boundary @�s crosses the �uid elements, interpolation of the �uid velocity at this boundary
results in less accurate solutions. To improve accuracy, mesh re�nement is required, which
can be expensive if it is not known a priori where the solid phase is situated. Furthermore,
during diastolic phase of the heart cycle the valves are closed and due to a pressure decrease
in the left ventricle, a large pressure gradient occurs across the valve lea�ets. Since the lea�ets
are crossing the �uid elements, erroneous results for the pressures are obtained, which largely
in�uences the velocities.
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The model proposed in this paper is based on the idea to create a boundary @�f inside
the �uid domain that coincides with boundary @�s by performing an adaptation of the mesh
in the vicinity of @�s as explained next.

2.3. Mesh adaptation

Consider a (�uid) mesh, �f, with an arbitrary solid boundary curve, @�s, crossing it as
shown in Figure 1(a). In order to create a boundary @�f in the �uid domain that coincides
with boundary @�s, �rst the intersections of @�s with �f need to be found. When all the
intersections are determined a selection of �uid nodes, that ensures mesh integrity, are shifted
along the intersected curves from the nodes on this curve to boundary @�s. The �uid nodes
that lie on @�s now form a new inner �uid boundary called @�f.
The repositioning of the nodes around the boundary @�s in�uences the element shapes of

this boundary, which can lead to inaccurate results. Therefore, smoothing is applied in this
region. The �uid nodes that lie on @�s are not allowed to be shifted. The smoothing can be
applied in several node layers around @�s and is based on connectivity. We implemented an
algorithm as presented by Freitag [15, 16]. First, one step of Laplacian smoothing is used, in
which the new position of a node is calculated by determining the geometrical centre of the
surrounding vertex nodes. Second, an angle optimization algorithm is applied in which the
angles of elements around @�s are enlarged if they are too small. Per node the surrounding
elements and their angles are determined. The node is repositioned such that the smallest of
these angles is maximized. Following, in case of second-order extended elements, the midside
nodes and centroid are repositioned. The resulting adapted �uid mesh, which can be used for
computing, is shown in Figure 1(b).
Now that an inner �uid boundary @�f is obtained that coincides with the solid bound-

ary @�s, not only accuracy is gained. It is also possible to take the same discretization for
the Lagrange multiplier domain as for @�f. From numerical experiments it was found that
the weakly coupled system is very sensitive to the amount of coupling elements in which the
Lagrange multiplier was discretized and to the order of the interpolation functions of these
coupling elements. More or higher-order coupling elements clearly lead to stronger coupling
between solid and �uid. However, if the discretization is chosen too �ne, the system tends
to diverge, as is also observed for interpolation functions of order one and higher. Especially
the �uid is very sensitive to the amount of coupling elements. If the discretization of the
Lagrange multiplier is based on the solid discretization, it is di�cult to control the number
of coupling elements within one �uid element. It is therefore convenient to de�ne it based
on the discretization of the newly created inner boundary @�f.

2.4. Solution process

If the combined �ctitious domain=adaptive meshing approach is used in time-dependent prob-
lems, as will be presented in this paper, the mesh needs to be generated only once. From this
mesh, every timestep a second mesh will be created, which is adapted to current solid bound-
ary position. This adapted mesh will be used for computational purposes. The non-linear set
of equations is linearized and solved in a Newton–Raphson iterative scheme. Each time step
after convergence of this iteration scheme the solid position is updated (an updated Lagrange
formulation is used) and a new mesh is created based on the original mesh and the new
position of the solid. Following, solutions are mapped from the second mesh onto the newly
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Figure 2. Schematic representation of the program.

created mesh using the basis functions of the �uid elements. A graphical representation of the
program is shown in Figure 2. An implicit time-integration scheme is used for both the solid
and �uid and a �rst-order approximation is used for the velocity (Cf= uf=�t and Cs= us=�t),
where �t is the time step. For the �uid P+2 −P1 triangular elements are used and for the solid
Q+2 − Q1 quadrilateral elements. The Lagrange multiplier domain has the same discretization
as the internal �uid boundary that is obtained from mesh adaptation and is integrated using
discontinuous linear interpolation functions. Note, that in the model problems, presented in
this paper, the thickness and mass of the solid are negligible as far as the interaction with the
�uid is considered. Therefore, �uid and solid velocity are coupled at only one boundary of
the solid. With respect to the FD method only extra computation time is needed to perform
the mesh adaptation and mapping. Since topology does not alter, the adaptation is a relatively
small task, especially for large systems. The CPU time needed to perform the mesh adaptation
is therefore negligible compared to the time needed for solving the system. The �nite element
package, SEPRAN [17], is extended for the computations in combination with a direct HSL
solver [18].

3. RESULTS

In order to show the value of the presented combined �ctitious domain=adaptive meshing
method in �uid–structure problems with �exible lea�ets, two model problems are presented.
The �rst model shows how an applied pulsatile �ow will cause a �exible solid slab to deform
and move. The �ow �eld in its turn is highly in�uenced by the slab. As will be highlighted,
shear stresses can vary signi�cantly in space and time. The second problem will show the
ability of the method to describe a transvalvular pressure drop. To emphasize the necessity
of mesh adaptation, a comparison is made with an FD method.
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3.1. Flexible solid slab in a rigid �uid domain

An Eulerian �uid domain �f is considered with an immersed Lagrangian solid domain �s
(Figure 3). Along the walls, denoted with �wall, a no slip condition applies and at �inlet the
velocity is prescribed as a function of time,

vf= sin(2�t) (11)

over a dimensionless time period of 0.0–1.0. The solid is attached to the upper wall. The �uid
is described by the Navier–Stokes equation (2) and the solid by the Neo–Hookean relation (6).
As stated earlier the Lagrange multiplier domain is de�ned along the internal �uid boundary
that is obtained from mesh adaptation and coincides with boundary @�s. The domain is
integrated using linear, discontinuous interpolation functions. To get a stable tip displacement,
coupling elements are de�ned along the solid boundary �tip, which use constant, discontinuous
interpolation functions. For comparison, a �ctitious domain computation has been performed
using the same mesh. Only, the discretization of the Lagrange multipliers is chosen equal to
that of the solid at boundary @�s. Constant, discontinuous interpolation functions are used for
integration. For all computations concerning this model problem, time is discretized into 4000
time steps. A maximum Reynolds number of 1000 (height of the canal is used as characteristic
length) and a maximum Strouhal of 0.1 are used. Large extensions for the inlet and outlet
are needed to avoid boundary in�uences, which leads to a length/height ratio of the canal of
20:1. The �uid mesh is divided into 5004 elements. The solid mesh consists of a length/width
ratio of 18:1 and is divided into 20× 2 elements.
Since the tip of the solid can move most freely, its movement is taken as a comparison

between both methods. In Figures 4(a), (b) and (c) the tip position is plotted as well as the
seperate x and y displacements as a function of time (Note that x is the axial direction).
Only small di�erences are observed in axial direction while a comparison of the methods
in y-direction shows larger di�erences. However, although the transient behaviour between
maxima and minima is di�erent for both methods, the value and time at which they take
place correspond reasonably well. In Figures 5(a), (b) and (c) the solution at t=0:575 is
highlighted in a plot of a mesh, a vector plot of the velocity �eld and a contour plot of the
velocity �eld, respectively. For sake of clarity the long inlet and outlet are not shown in the
�gures, which leaves the most interesting middle part of the �uid domain to be presented.
In this part of the time cycle, the prescribed velocity at the inlet has just changed sign and
the solid starts to move from right to left. At this time several vortices are present, which
immediately shows the necessity of the extended in and outlet. Time steps have proven to
be su�ciently small, as has the element size in the spacial discretization. Computations have

Figure 3. Schematic representation of a �exible slab in a �uid canal.
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Figure 4. Tip position of the solid during 1 cycle (t=0:0− 1:0) for the �ctitious domain method with
(FD/AM) and without (FD) adaptive remeshing (a). Tip position in x- and y-direction as a function of
time shown in (b) and (c), respectively. The �uid mesh consists of 5004 elements and the solid mesh

of 2× 40 elements and 4000 timesteps are used.

been performed for di�erent mesh discretizations (1268, 2534, 5004 and 8548 �uid elements)
of which the tip displacements are plotted in Figures 6(a), (b) and (c).
As mentioned before, one advantage of the FD method combined with mesh adaptation

compared to the FD method without it, is the possibility of gaining information about the
shear stresses along the solid. The choice of the (P+2 − P1) elements demands that the com-
puted velocities is continuous across the element boundaries, however, derivatives can be
discontinuous. Therefore, it is possible to compute di�erent shear stresses at either side of
the solid slab. Figure 7 shows part of the mesh and velocity vector at t=0:188 and Figure 8
shows the corresponding shear stresses along both sides of the solid. The shear stresses in the
midside nodes of the �uid element edges along the solid are plotted. Note that since the tip of
the solid lies inside a �uid element, no shear stress information at this position is available.

3.2. Fluid pressure drop over a �exible solid membrane

The �rst model problem incorporated the movement of the valve, the complexity of the �ow
�eld and the determination of shear stresses. These are typical phenomena during systole. An
important phenomenon during diastole is the moving pressure drop over the lea�ets, which is
captured in the following model problem. The setup, that is used, is similar to the one shown
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(a)

(b)

(c)

Figure 5. The adapted mesh (a), a vector plot of the velocity �eld (b) and a streamline plot
of the velocity �eld (c) at t=0:575.

in the former example (Figure 3). The only di�erence is that solid boundary �tip is now
connected to the bottom wall with homogeneous Dirichlet boundary conditions. The walls,
denoted with �wall, have homogeneous Dirichlet conditions and at �inlet Neumann boundary
conditions are prescribed. Coupling between the domains is established at @�s. The equations
and elements used for �uid and solid are the same as in the former example. Again, the
adaptive meshing approach is compared with a �ctitious domain approach. As the prescribed
pressure builds up the membrane will start to bend and elongate and �nally the membrane
will �nd an equilibrium position in which it bears the total pressure. A similar computation
is done using FD. However, erroneous results are obtained in the vicinity of the membrane
when the pressure jump gets too large (Figure 9(a)). The error in the solution accumulates,
which after several time steps leads to divergence of the non-linear system. The FD method
combined with adaptive meshing, on the other hand, captures the pressure drop accurately.
The P+2 − P1 elements are able to describe pressure discontinuities across the element edges.
By mesh adaptation an inner �uid curve is created, which enables a drop of the pressure
over the valve as would be expected. The corresponding velocity �eld will not be disturbed
by a poor pressure solution in the vicinity of the valve as can be seen in Figure 9(b). First,
movement of the valve is induced by the applied pressure as shown in Figure 9(b), but �nally
the velocity �eld will be zero with a pressure jump across the membrane.
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Figure 6. Tip position of the solid during 1 cycle (t=0:0− 1:0) for di�erent discretizations of the �uid
mesh. Tip position in x- and y-direction as a function of time are shown in (b) and (c), respectively.

Figure 7. Velocity vector plot on �uid mesh at t=0:188.

4. DISCUSSION

A method is presented for modelling �uid–structure problems in �exible heart valves, which is
able to accurately capture shear stress along both sides of the lea�ets as well as transvalvular
pressure gradients. The FD method presented by de Hart [12] is extended with a computation-
ally inexpensive adaptive meshing algorithm. Coupling of a seperate Eulerian and Lagrangian

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:533–544



A FICTITIOUS DOMAIN=ADAPTIVE MESHING METHOD 543

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-4

-2

0

2

4

6

8

10
x 10

position along the leaflet

sh
ea

r 
st

re
ss

fluid wall solid tip

-3

Figure 8. Shear stresses along both sides of the solid at t=0:188.

Figure 9. Pressure drop over a membrane using the �ctitious domain method with
(a) and without (b) mesh adaptation (showing the velocity vector �eld).

mesh is established using a Lagrange multiplier, which allows for optimal choices of the dis-
cretizations of �uid and structure. The coupling between the meshes is enhanced by adapting
the Eulerian mesh, such that an inner curve @�f is created which coincides with a solid
boundary. Since the �uid mesh is only adapted locally, where the solid crosses �uid elements
and since topology remains unchanged, the adaptation algorithm is relatively inexpensive with
respect to building and solving the set of equations. The use of a discontinuous pressure dis-
cretization in combination with the inner �uid curve @�f enables capturing of the pressure
drop across the lea�ets. Furthermore, accurate solutions for the shear stress at both sides of
the lea�ets can be obtained. Two examples are presented in which the method proves to be
a signi�cant improvement with respect to the FD method in which the Eulerian mesh is kept
unchanged. Since FD methods have proven to be an interesting numerical tool for 3D anal-
ysis of �uid–structure problems in heart valves [13, 14], extension of the presented method
to three dimensions is a step of great interest. However, in the 3D physiological situation,
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the three lea�ets of the aortic heart valve interact with one another. This solid–solid contact
problem was avoided in this paper by considering two separate situations that could be seen
as a representation for systole and diastole. In order to describe this transition phase, in which
the coaptation areas of the lea�ets interconnect, contact algorithms should be incorporated in
the computations.
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